Bayesian modeling of the covariance structure for irregular longitudinal data using the partial autocorrelation function

نویسندگان

  • Li Su
  • Michael J Daniels
چکیده

In long-term follow-up studies, irregular longitudinal data are observed when individuals are assessed repeatedly over time but at uncommon and irregularly spaced time points. Modeling the covariance structure for this type of data is challenging, as it requires specification of a covariance function that is positive definite. Moreover, in certain settings, careful modeling of the covariance structure for irregular longitudinal data can be crucial in order to ensure no bias arises in the mean structure. Two common settings where this occurs are studies with 'outcome-dependent follow-up' and studies with 'ignorable missing data'. 'Outcome-dependent follow-up' occurs when individuals with a history of poor health outcomes had more follow-up measurements, and the intervals between the repeated measurements were shorter. When the follow-up time process only depends on previous outcomes, likelihood-based methods can still provide consistent estimates of the regression parameters, given that both the mean and covariance structures of the irregular longitudinal data are correctly specified and no model for the follow-up time process is required. For 'ignorable missing data', the missing data mechanism does not need to be specified, but valid likelihood-based inference requires correct specification of the covariance structure. In both cases, flexible modeling approaches for the covariance structure are essential. In this paper, we develop a flexible approach to modeling the covariance structure for irregular continuous longitudinal data using the partial autocorrelation function and the variance function. In particular, we propose semiparametric non-stationary partial autocorrelation function models, which do not suffer from complex positive definiteness restrictions like the autocorrelation function. We describe a Bayesian approach, discuss computational issues, and apply the proposed methods to CD4 count data from a pediatric AIDS clinical trial.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

Structure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s

In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...

متن کامل

Hydrological Drought Forecasting Using Stochastic Models (Case Study: Karkheh watershed Basin)

Hydrological drought refers to a persistently low discharge and volume of water in streams and reservoirs, lasting months or years. Hydrological drought is a natural phenomenon, but it may be exacerbated by human activities. Hydrological droughts are usually related to meteorological droughts, and their recurrence interval varies accordingly. This study pursues to identify a stochastic model (o...

متن کامل

Modeling covariance matrices via partial autocorrelations

We study the role of partial autocorrelations in the reparameterization and parsimonious modeling of a covariance matrix. The work is motivated by and tries to mimic the phenomenal success of the partial autocorrelations function (PACF) in model formulation, removing the positive-definiteness constraint on the autocorrelation function of a stationary time series and in reparameterizing the stat...

متن کامل

Spatial-Temporal Trend Modeling for Ozone Concentration in Tehran City

 Fitting a suitable covariance function for the correlation structure of spatial-temporal data requires de-trending the data. In this article, some potential models for spatial-temporal trend are presented. Eventually the best model will be announced for de-trending tropospheric ozone concentration data for the city of Tehran (Capital city of Iran). By using the selected trend model, some ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2015